Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 22(12): 1453-1462, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37620646

RESUMO

Robots have components that work together to accomplish a task. Colloids are particles, usually less than 100 µm, that are small enough that they do not settle out of solution. Colloidal robots are particles capable of functions such as sensing, computation, communication, locomotion and energy management that are all controlled by the particle itself. Their design and synthesis is an emerging area of interdisciplinary research drawing from materials science, colloid science, self-assembly, robophysics and control theory. Many colloidal robot systems approach synthetic versions of biological cells in autonomy and may find ultimate utility in bringing these specialized functions to previously inaccessible locations. This Perspective examines the emerging literature and highlights certain design principles and strategies towards the realization of colloidal robots.

2.
J Math Biol ; 86(1): 11, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36478092

RESUMO

Recent progress in nanotechnology-enabled sensors that can be placed inside of living plants has shown that it is possible to relay and record real-time chemical signaling stimulated by various abiotic and biotic stresses. The mathematical form of the resulting local reactive oxygen species (ROS) wave released upon mechanical perturbation of plant leaves appears to be conserved across a large number of species, and produces a distinct waveform from other stresses including light, heat and pathogen-associated molecular pattern (PAMP)-induced stresses. Herein, we develop a quantitative theory of the local ROS signaling waveform resulting from mechanical stress in planta. We show that nonlinear, autocatalytic production and Fickian diffusion of H2O2 followed by first order decay well describes the spatial and temporal properties of the waveform. The reaction-diffusion system is analyzed in terms of a new approximate solution that we introduce for such problems based on a single term logistic function ansatz. The theory is able to describe experimental ROS waveforms and degradation dynamics such that species-dependent dimensionless wave velocities are revealed, corresponding to subtle changes in higher moments of the waveform through an apparently conserved signaling mechanism overall. This theory has utility in potentially decoding other stress signaling waveforms for light, heat and PAMP-induced stresses that are similarly under investigation. The approximate solution may also find use in applied agricultural sensing, facilitating the connection between measured waveform and plant physiology.


Assuntos
Peróxido de Hidrogênio , Estresse Mecânico
3.
Nat Commun ; 13(1): 5734, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229440

RESUMO

Spontaneous oscillations on the order of several hertz are the drivers of many crucial processes in nature. From bacterial swimming to mammal gaits, converting static energy inputs into slowly oscillating power is key to the autonomy of organisms across scales. However, the fabrication of slow micrometre-scale oscillators remains a major roadblock towards fully-autonomous microrobots. Here, we study a low-frequency oscillator that emerges from a collective of active microparticles at the air-liquid interface of a hydrogen peroxide drop. Their interactions transduce ambient chemical energy into periodic mechanical motion and on-board electrical currents. Surprisingly, these oscillations persist at larger ensemble sizes only when a particle with modified reactivity is added to intentionally break permutation symmetry. We explain such emergent order through the discovery of a thermodynamic mechanism for asymmetry-induced order. The on-board power harvested from the stabilised oscillations enables the use of electronic components, which we demonstrate by cyclically and synchronously driving a microrobotic arm. This work highlights a new strategy for achieving low-frequency oscillations at the microscale, paving the way for future microrobotic autonomy.


Assuntos
Peróxido de Hidrogênio , Natação , Animais , Mamíferos , Movimento (Física)
4.
Sci Adv ; 7(37): eabe9733, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516870

RESUMO

Living plants provide an opportunity to rethink the design and fabrication of devices ordinarily produced from plastic and circuit boards and ultimately disposed of as waste. The spongy mesophyll is a high -surface area composition of parenchyma cells that supports gas and liquid exchange through stomata pores within the surface of most leaves. Here, we investigate the mesophyll of living plants as biocompatible substrates for the photonic display of thin nanophosphorescent films for photonic applications. Size-sorted, silica-coated 650 ± 290 -nm strontium aluminate nanoparticles are infused into five diverse plant species with conformal display of 2-µm films on the mesophyll enabling photoemission of up to 4.8 × 1013 photons/second. Chlorophyll measurements over 9 days and functional testing over 2 weeks at 2016 excitation/emission cycles confirm biocompatibility. This work establishes methods to transform living plants into photonic substrates for applications in plant-based reflectance devices, signaling, and the augmentation of plant-based lighting.

5.
Nature ; 584(7822): 530-531, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32848217

Assuntos
Robótica
6.
Nat Commun ; 10(1): 2575, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189873

RESUMO

Active colloids are a class of microparticles that 'swim' through fluids by breaking the symmetry of the force distribution on their surfaces. Our ability to direct these particles along complex trajectories in three-dimensional (3D) space requires strategies to encode the desired forces and torques at the single particle level. Here, we show that spherical colloids with metal patches of low symmetry self-propel along non-linear 3D trajectories when powered remotely by an alternating current (AC) electric field. In particular, particles with triangular patches of approximate mirror symmetry trace helical paths along the axis of the field. We demonstrate that the speed and shape of the particle's trajectory can be tuned by the applied field strength and the patch geometry. We show that helical motion can enhance particle transport through porous materials with implications for the design of microrobots that can navigate complex environments.

7.
Nat Commun ; 10(1): 495, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700714

RESUMO

The pursuit of chemically-powered colloidal machines requires individual components that perform different motions within a common environment. Such motions can be tailored by controlling the shape and/or composition of catalytic microparticles; however, the ability to design particle motions remains limited by incomplete understanding of the relevant propulsion mechanism(s). Here, we demonstrate that platinum microparticles move spontaneously in solutions of hydrogen peroxide and that their motions can be rationally designed by controlling particle shape. Nanofabricated particles with n-fold rotational symmetry rotate steadily with speed and direction specified by the type and extent of shape asymmetry. The observed relationships between particle shape and motion provide evidence for a self-electrophoretic propulsion mechanism, whereby anodic oxidation and cathodic reduction occur at different rates at different locations on the particle surface. We develop a mathematical model that explains how particle shape impacts the relevant electrocatalytic reactions and the resulting electrokinetic flows that drive particle motion.

8.
ACS Nano ; 12(3): 2939-2947, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29547265

RESUMO

The propulsion of micro- and nanoparticles using ultrasound is an attractive strategy for the remote manipulation of colloidal matter using biocompatible energy inputs. However, the physical mechanisms underlying acoustic propulsion are poorly understood, and our ability to transduce acoustic energy into different types of particle motions remains limited. Here, we show that the three-dimensional shape of a colloidal particle can be rationally engineered to direct desired particle motions powered by ultrasound. We investigate the dynamics of gold microplates with twisted star shape ( C nh symmetry) moving within the nodal plane of a uniform acoustic field at megahertz frequencies. By systematically perturbing the parametric shape of these "spinners", we quantify the relationship between the particle shape and its rotational motion. The experimental observations are reproduced and explained by hydrodynamic simulations that describe the steady streaming flows and particle motions induced by ultrasonic actuation. Our results suggest how particle shape can be used to design colloids capable of increasingly complex motions powered by ultrasound.

9.
Proc Natl Acad Sci U S A ; 115(6): E1090-E1099, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358385

RESUMO

The symmetry and shape of colloidal particles can direct complex particle motions through fluid environments powered by simple energy inputs. The ability to rationally design or "program" the dynamics of such active colloids is an important step toward the realization of colloidal machines, in which components assemble spontaneously in space and time to perform dynamic (dissipative) functions such as actuation and transport. Here, we systematically investigate the dynamics of polarizable particles of different shapes moving in an oscillating electric field via induced-charge electrophoresis (ICEP). We consider particles from each point group in three dimensions (3D) and identify the different rotational and translational motions allowed by symmetry. We describe how the 3D shape of rigid particles can be tailored to achieve desired dynamics including oscillatory motions, helical trajectories, and complex periodic orbits. The methodology we develop is generally applicable to the design of shape-directed particle motions powered by other energy inputs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...